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Introduction 

Linear motor parameters can be confusing and difficult to understand, especially when different manufacturers 
use different methods to formulate and present them.  This application note will start with first principles and 
establish motor parameter formulations that are consistent and convenient to measure.  It will also give the 
relationships between certain motor parameters, show how some values differ depending on the winding type of 
the motor, and show how some parameters are not dependent on the winding type.  These formulas and 
relationships will then be compared with experimentally measured values to gauge their accuracy. 

Force Constant 

Both the electric field and magnetic field can be defined from the Lorentz force law: 
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rrrr

qq +=  

This can be simplified to calculate the force on current carrying conductors in a magnetic field as 

(1) BLF ×= i . 

In three phase linear motors where L and B are normal vectors, this reduces to 
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where F is the total force produced by the motor, L is the length of conductor in the flux field for each phase, ip is 
the phase current, and Bp is the magnetic flux through each phase.  The flux is described by 

(3) )sin(θBBp = , 

where θ is the magnetic phase angle and B is the maximum magnetic flux.  Using sinusoidal commutation 
results in sinusoidal currents in each phase, 

(4) ),sin(θphasep Ii =  

where Iphase is the peak current passing through each motor phase.  Substituting equation (3) and (4) into (2) 
and assuming 120° phase spacing yields: 

(5) ))120(sin)120(sin)(sin( 222 −+++= θθθ BIBIBILF phasephasephase . 
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Expanding and reducing using trigonometric identities yields: 
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This can be used to define the motor’s force constant, Kf, as 
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When L is measured in meters and B is measured in Tesla (10,000 Gauss), Kf has units of N/A. 

In the case of a Delta wound motor, see Figure 1, the amplitude of the current waveform in the motor lead 
is different than the amplitude of the current waveform in the motor phase. 

 

Figure 1.  Delta Wound Motor 

Since the motor lead current waveform can be measured more easily, it is more convenient to express 
the force constant in terms of motor lead amplitude, Ilead.  The relationship between them can be 
determined by evaluating 
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Reducing yields, 
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This shows that the motor lead current waveform in a Delta wound motor is phase shifted 30 degrees and 
has larger amplitude than the motor phase current waveform.  Specifically, 

(9) phaseLead II 3=∆− . 

Using (9) and (7), a practical force constant for a Delta wound motor can be defined as 
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Since the motor lead current waveform is the same as the motor phase current waveform in a WYE 
wound motor (see Figure 2), the force constant definition does not need to be adjusted. 
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Figure 2.  WYE wound motor 
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BEMF Constant 

Faraday’s Law can be used to define the motional emf voltage of a conductor in a magnetic field as: 

(12) vBLemf = . 
This can be used to define the motor’s BEMF constant, Ke, as the amplitude of the voltage waveform generated 
by a motor phase as it is moved through the magnetic field at a constant velocity divided by that velocity.  When 
L is measured in meters and B is measured in Tesla, Ke  has units of V/(m/s). 
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It is more convenient to state Ke in terms of motor lead voltage since this is generally easier to measure than 
phase voltage. This leads to different expressions of Ke for Delta and WYE wound motors.  In the case of a 
Delta wound motor, the motor phase voltage is the same as the motor lead voltage, so 

(14) LBKe =∆− . 

The motor lead voltage of a WYE wound motor will be the difference of two motor phase voltages. 
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Reducing yields; 
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This shows that the voltage waveform measured between two motor leads of a WYE connected motor will have 
larger amplitude and be shifted 30 degrees compared to the motor phase voltage waveform.  Using (13) and 
(16), a practical definition for Ke-Y  can be created, 
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Note that the ratio between the force constant and BEMF constant is not dependant on the winding type; 
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Instantaneous Motor Power 

The total power required by the motor can be expressed as, 
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=
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The voltage required for each phase is given by, 
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Substituting (20) into (19) yields 
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Using (6), this can be written as 
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The relationships between lead-to-lead resistance and phase resistance for Delta and WYE wound motors are 
as follows, 
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Using these relationships and (9), (22) can be expressed as 
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Note that when the power is expressed in terms of lead-to-lead resistance and motor lead current waveform 
amplitude, the expressions for Delta and WYE wound motors are identical. 

The first term in (25) is the thermal power and the second term is the mechanical power.  From the standpoint of 
motor sizing, thermal power is the critical parameter since motor performance is limited by the temperature rise 
of the windings.  However, total power must be considered when sizing the amplifier and power supply. 
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Care must be taken when calculating the average power required for a 
complete motion profile.  The electrical energy converted into kinetic energy 
during acceleration is usually returned to the system during deceleration.  
Energy expended as mechanical work done while moving, such as metal 
cutting, is not returned and is lost in some other way.  Attention must be paid 
to the sign of F in the mechanical power term to make sure that the total power 
is calculated correctly. 

 

 

Example:  Constant Acceleration 

 

The conversion of electrical energy to kinetic energy is simple to examine when acceleration is constant and frictional 
losses are neglected.  Consider accelerating a mass, m, at a constant rate, a, to final velocity, v, in time t.  The force 
required to accelerate this mass is F, which equals ma.  The energy required is the average power required times t.  
The average power required is the average velocity, v/2, times F.  So the electrical energy required is 

2

2
1

222
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vmvmatvFtvE ==== . 

Notice that the electrical energy calculated above is exactly equal to the kinetic energy of the mass m moving at 
velocity v. 

When decelerating back to zero velocity, F will equal –ma.  The kinetic energy will be converted back into electrical 
energy and returned to the system bus. 
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Motor Constant 

The motor constant, Km, is a figure of merit used to compare the relative efficiencies of different motors.  It is 
expressed as an amount of force produced divided by the square root of the power dissipated while producing 
that force, 

(26) 
thermal

m P
FK = . 

A higher value of Km means the motor can produce more force for a given amount of power lost.  It is 
convenient to expand this and express Km in terms of Kf and the lead-to-lead resistance as follows, 
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As long as lead-to-lead resistance and lead current amplitude are used, Km does not depend on the winding 
type. 

Since the motor resistance increases with temperature, the motor constant will decrease with temperature.  
Most motors experience some temperature increase during operation, so it is useful to know the motor constant 
as a function of temperature.  The resistance of copper increase 0.393% per degree C temperature rise, which 
leads to the following formula for the hot Km, 
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Where Thot is the operating temperature of the motor, Tcold is the temperature at which Rl-l-cold is reported (usually 
20 or 25 deg C), and Kf-lead is the value for the force constant given when using the motor lead current waveform 
amplitude. 
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Experimental Result 

Measurements of BEMF, force, current, voltage and power were taken using a Trilogy 310-6 ironless linear 
motor.  The motor applied a static force to an Omega LC203-200 load cell.  The voltage, current, and power 
were measured using a power meter developed using Cirrus Logic CS5460 power meter chips.  The motor was 
controlled by a Delta Tau PMAC controller sinusoidally commutating a Trust Automation TA320 linear amplifier 
operating on a 120 VDC bus.  Figure 3 shows the equipment used. 

 

Figure 3.  Force and Power Test Equipment 

The motor’s BEMF constant was determined by moving the motor by hand and using an oscilloscope to 
measure the resulting voltage waveform.  Figure 4 shows the waveforms. 

The magnetic cycle length of the Trilogy 310 series motor is 2.4” or 60.96mm.  The peak-to-peak voltage and 
period of the BEMF waveform for two phases of the motor are given by the oscilloscope.  These values can be 
used to calculate Ke.  This motor is normally connected in Delta. 
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Figure 4.  Trilogy 310-6 BEMF Waveform 

The lead to lead motor resistance was measured using an Ohmmeter, 

 OhmsR ll 4.24=∆−−  

The force measured by the load cell was 78 pounds, 

 NpoundsF 34778 ==  

The motor lead current waveform amplitude, motor lead voltage waveform amplitude, energy, and power were 
written to a text file every ¼ second by the power meter.  This data is shown in Figure 5.  Columns 2, 3, and 4 
show the RMS current, RMS voltage, and energy respectively for that ¼ second period.  Column 5 shows the 
RMS value of all the steps to that point.  Column 6 shows the total energy to that point.  Column 7 shows the 
average power up to that point (Etotal / Total time).  Column 8 shows Km calculated using the force produced 
divided by the square root of the power. 
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Measured Data Calculated Data 
Time 

[s] 
Irms 
[A] 

Vrms 
[V] 

E 
[J] 

Irms Total 
[A] 

E Total 
[J] 

Pavg 
[W] 

Motor Constant -
F/sqrtP [N/sqrtW] 

0.75 4.0 82.2 71.3 4.0 214.6 286.1 20.5 
1.00 4.0 83.0 71.4 4.0 286.0 285.9 20.5 
1.25 4.0 82.6 71.5 4.0 357.5 285.9 20.5 
1.50 4.0 82.9 71.2 4.0 428.7 285.7 20.5 
1.75 4.0 82.6 71.2 4.0 499.9 285.6 20.5 
2.00 4.0 82.2 71.2 4.0 571.1 285.5 20.5 
2.25 4.0 82.7 71.2 4.0 642.3 285.4 20.5 
2.50 4.0 82.3 71.2 4.0 713.5 285.3 20.5 
2.75 4.0 82.7 71.2 4.0 784.6 285.2 20.6 
3.00 4.0 82.4 71.1 4.0 855.8 285.2 20.6 
3.25 4.0 82.7 71.1 4.0 926.9 285.1 20.6 

Figure 5.  Output of the Power Meter 

The power meter used measures the peaks of the voltage and current waveforms and the energy several times 
every millisecond.  It then calculates and reports RMS values for the measured peak-of-sine-wave current and 
voltage values and reports those for every user selected time interval, in this case 0.25 seconds.  It also 
calculates an RMS value for all of the peak-of-sine-wave current measurements and reports the new total 
RMS current value every time interval. 

Care must be taken when using equipment to measure motor voltage and/or 
current values.  There are many different ways to report these values (for 
example, peak of sine or RMS of sine) and the results can be very confusing or 
misleading if the correct formulation is not known.  The relationships derived 
so far use peak of sine (that is, amplitude) values.  The equipment 
manufacturer should be able to clarify how the values are formulated and how 
they relate to the peak of sine values. 

In this case the motor was stationary and putting out a constant force, so the voltage and current were not 
changing and the RMS values are the same as the peak values. 

The force constant can be calculated two different ways; by using F/I or by using the relationship between Ke 
and Kf given by (18).  (Note that these values agree to within about 0.6%) 
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The motor power can be calculated three different ways 

• Energy divided by time as reported by the power meter, 

• Equation (25) using the measured lead to lead resistance and reported lead current, 

• Using the lead current and lead voltage as reported by the power meter since this was a stationary test 
and no electrical energy was converted to kinetic energy. 
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Since the motor lead voltage waveform and motor lead current waveform are not in phase once the motor is 
connected in Delta or WYE (see the derivations of (8) and (16)) simply multiplying their amplitudes to obtain 
total power is not correct.  To derive the correct formula for power as a function of peak lead voltage and peak 
lead current, the relationship between peak lead voltage, peak lead current, and lead to lead resistance must be 
determined and substituted into (25).  In this special case, the motor is stationary so the motional emf can be 
neglected. 

In the case of a Delta wound motor, peak lead voltage is the same as peak phase voltage.  So, 
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In the case of a WYE wound motor, the lead voltage is the difference of two phase voltages, 
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This reduces to 
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Note from (30) and (31) that the peak lead voltage as a function of lead to lead resistance and peak lead current 
does not depend on the winding type.  Substituting (30) or (31) into (25) and assuming v=0, 
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**Note: these relationships are only valid when the motor is stationary.  They do not include emf. 

The motor power calculated using (32) and an average value of the reported voltage is 

 ( )( ) WVAP 1.2866.820.4
2
3

== . 

The motor power calculated using (25) is 

 ( ) ( ) WOhmsAP 8.2924.240.4
4
3 2 == . 

The average motor power reported by the power meter is 

 WP 5.285= . 

These values agree to within about 2.5%. 
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The motor constant calculated by using (26), the power meter output, and the force reported by the load cell is 
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The motor constant calculated by using (27) is 
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These values agree to within about 0.5%. 

Summary 

The Lorentz force law can be used to express the motor force constant, Kf, as a function of the total length of 
wire in one phase that passes through the magnetic field, L, and the maximum strength of the magnetic field, B.  
This value depends on the winding type; 

(10) LBK f 2
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=∆−  

(11) LBK Yf 2
3

=−  

Faraday’s Law can be used to express the motor BEMF constant, Ke, as a function of LB as well.  This value 
also depends on the winding type, 

(14) LBKe =∆−  

(17) LBK Ye 3=−  

The ratio of force constant to BEMF constant is independent of the winding type; 
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The instantaneous motor power can be determined by summing the power of the three phases.  As long as 
lead to lead resistance and peak motor lead current are used, this value is independent of the winding type. 

(25) vFIRP Leadlltotal += −
2

4
3

 

The first term is the thermal power dissipated in the motor and the second term is the mechanical power.  Care 
must be used when calculating the average power for a complete motion profile to make sure the sign of the 
mechanical power term is considered. 

When the motor is stationary there is no mechanical power, so the power can be calculated using 
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(32) leadleadtotal VIP
2
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=  **stationary motor only 

The motor constant, Km, is a figure of merit used to compare the relative efficiencies of different motors.  It is 
defined as the amount of force produced divided by the square root of the thermal power dissipated while 
producing that force.  Mechanical power is not included in the definition of Km because mechanical power is a 
function of velocity and including it would make Km a function of velocity as well, not a constant.  Km does not 
depend on the winding type as long as lead to lead resistance and peak lead current are used. 
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Since the motor resistance is a function of temperature and the motor experiences some temperature rise in 
most applications, it is useful to know the formula for Km as a function of temperature. 

(28) 
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The formulas and relationships given here correlate extremely well with experimental results. 

 

 


